Designing planar cubic B-spline curves with monotonic curvature for curve interpolation
نویسندگان
چکیده
منابع مشابه
Monotonic Cubic Spline Interpolation
This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C2 continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is...
متن کاملInterpolation scheme for planar cubic G2 spline curves
In this paper a method for interpolating planar data points by cubic G splines is presented. A spline is composed of polynomial segments that interpolate two data points, tangent directions and curvatures at these points. Necessary and sufficient, purely geometric conditions for the existence of such a polynomial interpolant are derived. The obtained results are extended to the case when the de...
متن کاملOn interpolation by Planar cubic G2 pythagorean-hodograph spline curves
In this paper, the geometric interpolation of planar data points and boundary tangent directions by a cubic G2 Pythagorean-hodograph (PH) spline curve is studied. It is shown that such an interpolant exists under some natural assumptions on the data. The construction of the spline is based upon the solution of a tridiagonal system of nonlinear equations. The asymptotic approximation order 4 is ...
متن کاملOn Interpolation by Planar Cubic G Pythagorean-hodograph Spline Curves
In this paper, the geometric interpolation of planar data points and boundary tangent directions by a cubic G2 Pythagorean-hodograph (PH) spline curve is studied. It is shown that such an interpolant exists under some natural assumptions on the data. The construction of the spline is based upon the solution of a tridiagonal system of nonlinear equations. The asymptotic approximation order 4 is ...
متن کاملTranslational Covering of Closed Planar Cubic B-Spline Curves
Spline curves are useful in a variety of geometric modeling and graphics applications and covering problems abound in practical settings. This work defines a class of covering decision problems for shapes bounded by spline curves. As a first step in addressing these problems, this paper treats translational spline covering for planar, uniform, cubic B-splines. Inner and outer polygonal approxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Visual Media
سال: 2020
ISSN: 2096-0433,2096-0662
DOI: 10.1007/s41095-020-0182-8